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Today’s distributed systems
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E.g.,Twitter
Twitter “death star”: https://twitter.com/adrianco/status/441883572618948608



Today’s distributed systems
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E.g.,TwitterE.g., Netflix

Machine-centric tools 
insufficient {GDB, 

gprof, 
strace, 
linux perf. counters

Amazingly complex

Netflix “death star”: http://www.slideshare.net/adriancockcroft/fast-delivery-devops-israel



Workflow-centric tracing
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Provides the needed coherent view

App Server Distributed FSTable store

Client

Server

Trace point  (e.g., at functions)

Get

27 ms

25 ms
17 µs
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! Metadata (e.g., IDs)



It is useful / being adopted
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\

Category Management task

Resource 
mgmt.

Attribution

Performance tuning

Diagnosis ID anomalous workflows

ID workflows w/ 
steady-state problems

Profiling

Multiple Dynamic monitoring

\

Stardust [SIGM’06]

Stardust✚ [NSDI’11]

X-Trace [NSDI’07]

X-Trace✚ [WREN’10]

Pip [NSDI’06]

Pinpoint [NSDI’04]

Mace [PLDI’07]

PivotTrace [SOSP’15]

Retro [NSDI’15]

\

Dapper [TR10-14]  
HTrace  Zipkin  
UberTrace  

But, no clarity for tracing developers
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But, no clarity for tracing developers
Re
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We provide clarity for tracing developers
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Methodology:

Use experiences  
to distill  

design axes

ID design  
choices best 

for different tasks

Compare to 
existing  

infrastructures

Task B ?}Task A

Task C
Task D

Tracing infrastructure

Choices: 1 2 3 4 5 6



Key results
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1 Different design decisions needed for 
diagnosis and resource management

3 Existing tracing infrastructures suited to a 
task make similar choices to our suggestions

2 Batching causes some design decisions across 
some axes to interact poorly



Tracing infrastructure
App Server Table store File system

Anatomy & design axes
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Management tasks

In-band / 
   out-of-band?

How will  
trace points  

be added?

What to use to  
reduce ovhd?Sa

m
pl

e?

How to define 
a request?

Conc./Sync. 
needed?

Causal relationships?

Inter-request 
needed?

! 

In
-b

an
d Trace construction

O
ut

-o
f-b

an
d

! 

Trace storage



How original Stardust defined requests
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WRITE START

CACHE WRITE
10 µs

20 ms

WRITE REPLY
2 µs

INSERT BLOCK

} Unaccounted 
latency

Response tim
e: ~20 m

s

Trace not useful for diagnosis tasks



Two valid ways to define a request’s workflow
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WRITE START

CACHE WRITE

WRITE REPLY

INSERT BLOCK

10 µs

9 µs

15 µs
WRITE START

CACHE WRITE
10 µs

~20 ms

WRITE REPLY
2 µs

INSERT BLOCK

9 µs

20,000 µs

EVICT BLOCK

DISK START

DISK END

5 µs

Resource management: Assign  
latent work to original submitter

Latent work



Two valid ways to define a request’s workflow
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WRITE START

CACHE WRITE

WRITE REPLY

INSERT BLOCK

10 µs

9 µs

15 µs
WRITE

CACHE WRITE
10 µs

WRITE REPLY
2 µs

INSERT BLOCK

5µs

5µs
20,000 µs

EVICT BLOCK

DISK START

DISK END

5 µs

Diagnosis: Assign latent work to  
request on whose critical path it is executed

Latent work



Future research directions
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Exploring new analyses

Reducing difficulty of adding trace points

Lowering overhead when identifying 
anomalous workflows



Summary
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Key design choices dictate 
workflow-centric utility 
for different tasks

We identify choices best 
suited for different tasks


