
Principled workflow-centric tracing
of distributed systems

Raja Sambasivan
Ilari Shafer, Jonathan Mace, Ben Sigelman,

Rodrigo Fonseca, Greg Ganger

Today’s distributed systems

2

E.g.,Twitter
Twitter “death star”: https://twitter.com/adrianco/status/441883572618948608

Today’s distributed systems

3

E.g.,TwitterE.g., Netflix

Machine-centric tools
insufficient {GDB,

gprof,
strace,
linux perf. counters

Amazingly complex

Netflix “death star”: http://www.slideshare.net/adriancockcroft/fast-delivery-devops-israel

Workflow-centric tracing

4

Provides the needed coherent view

App Server Distributed FSTable store

Client

Server

Trace point (e.g., at functions)

Get

27 ms

25 ms
17 µs

!

!

!

!

!
!

! Metadata (e.g., IDs)

It is useful / being adopted

5

\

Category Management task

Resource
mgmt.

Attribution

Performance tuning

Diagnosis ID anomalous workflows

ID workflows w/
steady-state problems

Profiling

Multiple Dynamic monitoring

\

Stardust [SIGM’06]

Stardust✚ [NSDI’11]

X-Trace [NSDI’07]

X-Trace✚ [WREN’10]

Pip [NSDI’06]

Pinpoint [NSDI’04]

Mace [PLDI’07]

PivotTrace [SOSP’15]

Retro [NSDI’15]

\

Dapper [TR10-14]
HTrace Zipkin
UberTrace

But, no clarity for tracing developers

6

But, no clarity for tracing developers
Re

al
ity Stardust

Stardust✚

Spectroscope

Ex
pe

ct
at

io
n

Stardust
Stardust

Spectroscope

We provide clarity for tracing developers

7

Methodology:

Use experiences
to distill

design axes

ID design
choices best

for different tasks

Compare to
existing

infrastructures

Task B ?}Task A

Task C
Task D

Tracing infrastructure

Choices: 1 2 3 4 5 6

Key results

8

1 Different design decisions needed for
diagnosis and resource management

3 Existing tracing infrastructures suited to a
task make similar choices to our suggestions

2 Batching causes some design decisions across
some axes to interact poorly

Tracing infrastructure
App Server Table store File system

Anatomy & design axes

9

Management tasks

In-band /
 out-of-band?

How will
trace points

be added?

What to use to
reduce ovhd?Sa

m
pl

e?

How to define
a request?

Conc./Sync.
needed?

Causal relationships?

Inter-request
needed?

!

In
-b

an
d Trace construction

O
ut

-o
f-b

an
d

!

Trace storage

How original Stardust defined requests

10

WRITE START

CACHE WRITE
10 µs

20 ms

WRITE REPLY
2 µs

INSERT BLOCK

} Unaccounted
latency

Response tim
e: ~20 m

s

Trace not useful for diagnosis tasks

Two valid ways to define a request’s workflow

11

WRITE START

CACHE WRITE

WRITE REPLY

INSERT BLOCK

10 µs

9 µs

15 µs
WRITE START

CACHE WRITE
10 µs

~20 ms

WRITE REPLY
2 µs

INSERT BLOCK

9 µs

20,000 µs

EVICT BLOCK

DISK START

DISK END

5 µs

Resource management: Assign
latent work to original submitter

Latent work

Two valid ways to define a request’s workflow

12

WRITE START

CACHE WRITE

WRITE REPLY

INSERT BLOCK

10 µs

9 µs

15 µs
WRITE

CACHE WRITE
10 µs

WRITE REPLY
2 µs

INSERT BLOCK

5µs

5µs
20,000 µs

EVICT BLOCK

DISK START

DISK END

5 µs

Diagnosis: Assign latent work to
request on whose critical path it is executed

Latent work

Future research directions

13

Exploring new analyses

Reducing difficulty of adding trace points

Lowering overhead when identifying
anomalous workflows

Summary

14

Key design choices dictate
workflow-centric utility
for different tasks

We identify choices best
suited for different tasks

