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Caching for Big Data Analytics

Two Sigma [2018], Facebook [VLDB 2012], and Yahoo [2010] analytic cluster
traces show that;

e High data input reuse )
e Uneven Data Popularity
® File popularity changes over time * CACH IN G
e Datasets accessed repeatedly by the same analytic
clusters and between different analytic clusters J

Alluxio (formerly known as Tachyon[sOcC’14]), HDFS-Cache, Pacman[NsDI'12],
Adaptive Caching [socc’16], Scarlett[Eurosys'11], Netco[sOCC'19]



Fundamental Goals of D3N

e Extension of the data lake
e Reduce demand on network

e Automatically adjust to:
access pattern
network contention



Design Principles

e Transparent to user

e Naturally scalable with the clusters that access it
e (Cache policies based purely on local information
e Hierarchical multi-level cache
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Dynamic Cache Size Management
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The algorithm partitions the cache space based on:
* Access Pattern
* Network Congestion



Dynamic Cache Size Management

-

N

L2

L1

~

J

Cache Server

e High rack locality with small working set size
e Congestion to storage network



Dynamic Cache Size Management
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Dynamic Cache Size Management
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The algorithm partitions the cache space based on:
* Access Pattern
* Network Congestion



Dynamic Cache Size Management

The algorithm measures
* the reuse distance histogram
* mean miss latency

Find the optimal cache size split.

Algorithm 2 Cache distribution adaptation

1: b,¢,S;, s, HCy: Asin Algorithm 1
2: MR;: miss rate (i.e. miss ratio Curve)
Algorithm 1 Re-use distance measurement 3: L;: measured miss latency . .
4: g: adaptation limit (maximum assignment change in blocks)
1: b:requested block
2: ¢:layer (1 or2) > Calculate updated L; L, cache distribution ?,,ew
3: S;: total cache size (in blocks) 5: procedure ADAPT
4: SL;: shadow LRU list (_length Sy 6: for{in1,2do
5: HCy: re-use distance histogram 7: MRy(i)= i’: HCy(K) > Calculate miss ratio curve
6: ?=(s1,s2): cache distribution, 51 +s2 =S, 8: C.c =inf
s, min
> Measure re-use distance for access to block b, layer £ 1%, i-':: '—j)/ in (51 —g,52+9)...(51+¢,52—q) do
% P“’icfeg‘é';LM&’:ff RE(b,6) 11: 7 =(MRy(s1)+MRy(s3) b Predicead miss e
: £ _ i 12: C=miLi+myL, > Expected latency
9: findis.t. SLy(i)=b > LRU position 13- ifC < Copiy then
10 HCy(i)++ 14 Cminm;"C
11 reorder SLy LRU due to access to b 15: Snew=5"

13



Edge Conditions and Failures

* VM Migration
* Anycast to DNS lookup server.
* TCP session keep active until a request is completed.

* Failure of cache server
* Heartbeat service is used to keep track of active caches.

* During a failure
* lookup service will direct new requests to second nearest L1.
* Consistent hashing algorithm remove the failed node from its map.



T e Implementation

Client
IS3 N ;Mﬂ\x ivak.‘éi’ e Modification to Ceph’s RADOS
ocal | gateway. We add 2500 lines of code.
- eaers w e Implements two level cache, L1 and L2.
L1 L1 L1 e Read Cache
Y ........ REEEERTONS A . , Rowson e Write Cache
E 5 Servers o  Write-through
o R J o0 Write-back (today no redundancy)
Distributed 5 : 5 e Stores cached data in 4 MB blocks as

L2 cache

individual files on an SSD-backed file

8 Evﬂ 8 system.
-




Evaluation of D3N

Micro Benchmarks
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Evaluation of D3N

Micro Benchmarks

e D3N saturates NVMe SSDs
and 40 GbE NICs
e Read throughput is increased

by DX.
e Write through policy imposes

a small overhead.
e Write back policy increased

the throughput by 9X.

Value of
Multi-level

Multi-layer provides
higher throughput
than single layer cache.



Evaluation of Cache Management

Adaptability to different access patterns
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Evaluation of Cache Management

Adaptability to different access patterns  Adaptability to network load changes

e Rapidly and automatically adjust changes
in workload access pattern and
congestion on network links.
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Impact of D3N on Realistic Workload

Workloads: Facebook Traces Facebook
® 75% reuse Trace
e 40TB data ¢
® Requests were randomly assigned ;
Benchmark: c‘@ Hadoop
e Mimic the hadoop mappers oncurrent 3~ Benchmark

e Concurrent 144 read requests using “curl”
D3N: 2 cache servers each have

e 1.5TB NVMe SSDs (RAID 0)

® Fast NIC: 2 x40 Gbit & Slow NIC: 2 x6 Gbit
Data lake:

e Ceph (90 HDDs)

20



Impact of D3N on Realistic Workload

The trace completion time

B Vanilla_RGW
N D3N

80Gbit/s-Total Run  12Gbits/s-Total Run 12Gbits/s-Warmed Up

D3N improves performance

significantly.

Cumulative data transferred
from back-end storage

_ Vanilla
| Warm-up: 23 Tb |
1510
D3N

Time (Hours)

More than 4x reduction to backend
traffic.




Concluding Remarks

Proposed a transparent multi layer caching
e Extension of the data lake
e Implemented two layer prototype
Results:
e Cache partitioning algorithm dynamically adapt changes
e Reduces demand datacenter wide
e Improve the analytic workloads performance
Red Hat is currently productizing D3N.
e https://github.com/ekaynar/ceph
Project Websites
e https://www.bu.edu/rhcollab/projects/d3n/
e https://massopen.cloud/d3n/

Thank you
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