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Motivation
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Network Limitations in Data Center



Caching for Big Data Analytics

Two Sigma [2018], Facebook [VLDB 2012], and Yahoo [2010] analytic cluster 

traces show that;
● High data input reuse

● Uneven Data Popularity

● File popularity changes over time

● Datasets accessed repeatedly by the same analytic

 clusters and between different analytic clusters
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CACHING

Alluxio (formerly known as Tachyon[SOCC’14]), HDFS-Cache, Pacman[NSDI’12], 
Adaptive Caching [SOCC’16], Scarlett[Eurosys’11] , Netco[SOCC’19]



Fundamental Goals of D3N

• Extension of the data lake

• Reduce demand on network

• Automatically adjust to:
• access pattern 
• network contention

6



Design Principles

• Transparent to user

• Naturally scalable with the clusters that access it

• Cache policies based purely on local information

• Hierarchical multi-level cache
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D3N’s Architecture



9

Dynamic Cache Size Management
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Cache Server

The algorithm partitions the cache space based on:

• Access Pattern

• Network Congestion



• High rack  locality with small working set size

• Congestion to storage network
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Dynamic Cache Size Management
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• High rack locality

• Congestion within the cluster network
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Dynamic Cache Size Management
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The algorithm partitions the cache space based on:

• Access Pattern

• Network Congestion
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Dynamic Cache Size Management
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The algorithm measures

• the reuse distance histogram

• mean miss latency 

Find the optimal cache size split.
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Dynamic Cache Size Management



• VM Migration
• Anycast to DNS lookup server.
• TCP session keep active until a request is completed.

• Failure of cache server
• Heartbeat service is used to keep track of active caches.
• During a failure

• lookup service will direct new requests to second nearest L1.
• Consistent hashing algorithm remove the failed node from its map.
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Edge Conditions and Failures
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RGWs on 
Cache

Servers

File Request
Block Request

Local
L1 caches

Distributed
L2 cache

Lookup
serviceS3 & Swift ● Modification to Ceph’s RADOS 

gateway. We add 2500 lines of code.
● Implements two level cache, L1 and L2.
● Read Cache
● Write Cache

○ Write-through
○ Write-back (today no redundancy)

● Stores cached data in 4 MB blocks as 
individual files on an SSD-backed file 
system. 
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Implementation
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Value of 
Multi-level

Micro Benchmarks

Multi-layer provides 
higher throughput
than single layer cache.

● D3N saturates NVMe SSDs 
and 40 GbE NICs

● Read throughput is increased 
by 5x.

● Write through policy imposes 
a small overhead.

● Write back policy increased 
the throughput by 9x.

Evaluation of D3N



Evaluation of Cache Management 
Adaptability to different access patterns
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Adaptability to network load changes



Evaluation of Cache Management 
Adaptability to different access patterns
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Adaptability to network load changes

● Rapidly and automatically adjust changes 
in workload access pattern and 
congestion on network links. 



Workloads: Facebook Traces
● 75% reuse
● 40TB data 
● Requests were randomly assigned

Benchmark: 
● Mimic the hadoop mappers oncurrent
● Concurrent 144 read requests using “curl”

D3N: 2 cache servers each have
● 1.5 TB NVMe SSDs (RAID 0)
● Fast NIC: 2 x40 Gbit & Slow NIC: 2 x6 Gbit 

Data lake: 
● Ceph (90 HDDs) 

 Ceph

D3N

     Hadoop          
          Benchmark

       Facebook
Trace
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Impact of D3N on Realistic Workload



             The trace completion time   

2.4x
3x25%

 D3N improves performance 

significantly.

 More than 4x reduction to backend 

traffic.

 Cumulative data transferred 

from back-end storage

23 Tb

5 Tb
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Impact of D3N on Realistic Workload

Vanilla

D3N



Concluding Remarks
Proposed a transparent multi layer caching

• Extension of the data lake
• Implemented two layer prototype

Results:
• Cache partitioning algorithm dynamically adapt changes
• Reduces demand datacenter wide
• Improve the analytic workloads performance

Red Hat is currently productizing D3N.
• https://github.com/ekaynar/ceph 

Project Websites
• https://www.bu.edu/rhcollab/projects/d3n/
• https://massopen.cloud/d3n/
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Thank you

https://github.com/CCI-MOC/ceph
https://www.bu.edu/rhcollab/projects/d3n/
https://massopen.cloud/d3n/

