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Abstract

Distributed tracing is the practice of bringing observability to a microservice-oriented system. It relies on propagating metadata

between processes and network boundaries to construct the complete journey of a request through a system, even if that

journey requires communication between multiple services. OpenTelemetry, an open-source standard and framework for

distributed tracing, has emerged as the front runner standard in distributed tracing in industry. Envoy is a high performance C++

distributed proxy that is commonly used in modern service-mesh architectures. This project focuses on adding OpenTelemetry

tracing support to Envoy, allowing for the efficient exporting of OTLP traces from Envoy. This paper explores the design space

and decisions for tracing support in Envoy and the OpenTelemetry C++ libraries, and it explores the relationship between

general library code and the needs of specialized applications.
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1 Introduction

Distributed tracing is the practice of bringing observability

to a microservice-oriented system. It relies on propagating

metadata between processes and network boundaries to con-

struct the complete journey of a request through a system,

even if that journey requires communication between multi-

ple services. OpenTelemetry[16], an open-source standard

and framework for distributed tracing, has emerged as the

front runner standard in distributed tracing in industry. A

flexible and vendor-agnostic approach, OpenTelemetry rep-

resents both the confluence of different tracing frameworks

and the future of open-source tracing. It allows developers an

easier and standardized experience for adding observability

to their systems.

Envoy[11] is a high performance C++ distributed proxy

that is commonly used in modern service-mesh architectures.

It provides tracing at the application level, and open source

developers have added support for a number of tracing frame-

works. There currently is no native OpenTelemetry tracing

support in Envoy, and adding support for OpenTelemetry

would allow any future users of Envoy to immediately use

the newOpenTelemetry Protocol (OTLP) to add observability

to their systems with tracing at the proxy-level, and it would

∗This work was performed while the author was employed at Google.

move Envoy from the outdated frameworks (OpenTracing

and OpenCensus) to the new standard.

Envoy is frequently used in a variety of configurations in

a service-mesh microservice architecture, including as an

ingress proxy, an egress proxy, a load balancer, or a sidecar;

for example, Istio[2] is a popular service mesh framework

that uses Envoy as sidecar proxies. Because an Envoy would

have full visibility into any work being done as a result of

an incoming request, either as a proxy or a sidecar, Envoy

represents a natural point to add observability to the system,

and instrumenting Envoy allows the user to have a bird’s

eye view of the work being done in a system. It can create

a span for the request that it proxies, representing all work

done on behalf of that request. When Envoy is used as a side

car proxy for a service, instrumenting Envoy allows for the

tracing of all of that service’s external requests, even if that

service itself has not been instrumented with tracing. With

its natural role as a hub for inter-service communications,

Envoy can play a key role in revealing the paths through

the system. As a first-party OpenTelemetry-traced service,

Envoy can mesh with the larger system ecosystem, allowing

for a modern and observable system.

This project focuses on addingOpenTelemetry tracing sup-

port to Envoy, allowing for the efficient exporting of OTLP

traces from Envoy. A second focus is the interface between
1
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Figure 1. From Envoy’s perspective, requests flow through
the data plane from downstream client to upstream service,
while configuration updates follow the control plane from
the configuration management server to Envoy. This paper
will mostly focus on the data plane.

tracing and Envoy’s industry-level system, specifically the

realities of meshing the two projects’ goals, architectures,

and requirements. This paper explores the design space and

decisions for tracing support in Envoy and the OpenTeleme-

try C++ libraries, and it explores the relationship between

general library code and the needs of specialized applica-

tions.

2 Background

This section covers the background material for this project,

including details on Envoy, distributed tracing, and Open-

Telemetry.

2.1 Envoy

Envoy is an open source high performance C++ distributed

proxy that is commonly used in modern service-mesh ori-

ented architectures. It is used by many companies, includ-

ing Lyft, Amazon, Google, Microsoft, Netflix, and many

others[11]. Envoy can be used in a variety of ways, including

(but not limited to) an ingress proxy, a sidecar for a service,

an internal load balancer, and an egress proxy for outgoing

traffic.

Envoy is typically situated between a client and one or

more backend servers (see Fig. 1). Requests are like salmon;

they "swim" upstream from a downstream client to an up-

stream backend. Though this terminology differs from other

uses of the downstream/upstream terms, this paper will use

Envoy’s terminology. Envoy also allows for dynamic con-

figuration updates via a configuration management server,

though the details are outside the scope of this paper. Envoy’s

surfaces can be separated into the control plane, which is the

path of configuration updates, and the data plane, which is

the path requests take through Envoy as they are proxied to

upstream services.

Envoy’s data plane request handling architecture has two

main parts: the listener subsystem, which is responsible for

downstream request processing, and the cluster subsystem,

which is responsible for selecting and connecting to the

upstream connection (see Fig. 2). The steps a request goes

through can be thought of roughly as a series of stages from

listener to upstream connection pool and back again. Once

a request is accepted by a worker thread (see Section 2.1.1),

it goes through a series of stages, called filters, at multiple

abstraction levels that allow Envoy to work on a request

at the corresponding level. For example, there could be a

listener filter that performs TLS inspection, a Network filter

that performs IP-based rate limiting, or an HTTP filter that

performs some authorization check on an HTTP header.

Developers may write custom filters, and these filters can be

executed on the request path, the response path, or in both

directions. The filters at each level are collectively called

filter chains; for example, the group of filters at the L7 level

is called the HTTP filter chain.

2
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Figure 2. Diagram of Envoy’s architecture. Requests flow
through Envoy from a listening socket through to the Cluster
Manager handling upstream connections.

The final filter in the HTTP filter chain is the HTTP Router

Filter, which finalizes route selection and selects an upstream

cluster that will be used as the destination for the proxied

request. This decision is then passed to the Cluster Manager,

which handles selecting the backend for a cluster, load bal-

ancing, upstream connection pools, and proxying the request

to the upstream service. Once that upstream service has re-

sponded, the response flows through the filter chains in the

reverse order and is eventually sent back to the downstream

connection.

Of particular interest to this paper is the application level.

When the request moves from the Network filter chain at

the network level to the HTTP filter chain at the application

level, it must go through the HTTP/2 Codec to be translated

from a byte buffer to a more accessible HTTP representation

and vice versa on the response path (see Figure 2). This is

done within the HTTP Connection Manager, which is the

last step of the network filter chain. It has ownership over

the lifecycle of the request at the application level, including

statistics and tracing (see Section 2.3).

All filter chains are created and run on demand; for the

network filter chain, this would be after the data from the

TCP connection has been decrypted, while for the HTTP

filter chain, this would be done for each HTTP stream after

the HTTP/2 Codec deframes and demultiplexes the incoming

data stream. This means that an instance of each filter chain

is created for each connection and streamwhen it is required,

and each filter is created uniquely for the part of the request

that needs it. For example, for two separate connections A

and B, eachwould have its own instances of the Listener filter

chain, the network filter chain, the HTTP filter chain, and

importantly for this paper, the HTTP Connection Manager.

2.1.1 Envoy’s Threading Model. Envoy’s threading

model consists of a single main thread and multiple siloed

worker threads, with each thread containing an event loop

(via libevent[12]). These worker threads use as little blocking

as possible, as a single worker thread may be handling many

connections at the same time. This design is similar to that

of NGINX[14], another high performance proxy.

One of Envoy’s key design principles is reducing shared

state and concurrency-based code as much as possible by

having independent worker threads working in parallel with

limited cross-thread communication. The main thread han-

dles general administrative tasks, such as server startup and

shutdown, receiving dynamic config updates via Envoy’s

various discovery service APIs, process management, and

surfacing the administrative interface. The worker threads

are responsible for handling connections throughout their en-

tire lifetimes, from listening for new connections to proxying
3
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upstream traffic. Envoy also has additional threads respon-

sible for background work such as file flushing for written

local files (such as access logs). By default, Envoy creates a

worker thread for each actual hardware thread, and tuning

this number is important for striking the balance between

idle connections, memory waste, and CPU usage for each

thread.

A connection begins with the kernel listening on a given

socket. When the kernel accepts a connection, it passes the

connection to one of the worker threads listening on that

socket. Once a worker thread takes on a connection, the

connection will only be on that worker thread throughout

the entire connection lifecycle. For each new connection,

the worker thread creates the filter chains that it will use

and the connection passes through them accordingly with

all further processing occuring on that same thread. Each

thread runs as a non-blocking event loop via libevent, and

each worker thread is able to handle multiple connections

with any explicit waiting done via event-based callbacks.

One benefit from this approach is that the majority of the

code written for connection handling on each worker thread

can be written as if it is a single-threaded application, which

greatly reduces the complexity required for both writing

and reasoning about the code[18]. The other main benefit

is that this approach scales well with the number of worker

threads, as the addition of more worker threads does not

create additional bottlenecking with any shared resources.

An important implication is that there are multiple con-

nections spending their entire lifecycles on a single worker

thread, and if that thread is blocked for any one single con-

nection, any other connections on that thread will also be

blocked. This requires some care when writing code on the

connection path, as it means that all potentially blocking

events should be handled with event-based callbacks, allow-

ing the thread to perform other work in the meantime. For

example, if there is an HTTP filter that performs an RPC to

an external service for an authorization check for a given

request, this RPC must be handled with a callback and not

block, as blocking the worker thread would prohibit any

other requests from moving forward until the RPC returns.

That being said, Envoy does use some blocking behavior

when necessary (such as workers acquiring a lock before

writing access logs), but these situations are generally low-

contention [13].

Envoy has a mechanism for sharing information across

threads called thread local storage [13]. The main use is ef-

ficient sharing of information from the main thread to the

worker threads. One example is passing configuration up-

dates, where the main thread handles configuration changes

and posts updates to the worker threads. With thread local

storage, one can also store objects in the thread local stor-

age that will be accessible to code inside each worker; for

instance, a shared gRPC client stored in thread local stor-

age could be used by any code running inside the thread,

though the aforementioned blocking considerations would

still apply.

2.1.2 Envoy’s Security Model. Envoy’s security model

assigns safety to upstream or downstream connections for

each extension. It has an extensive security review process

for external dependencies, and there is an active effort to

reduce the dependency on libcurl, which, from a security

perspective, has been a particularly problematic library in

the past few years.
4
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Envoy’s threat model is also divided into data plane and

control plane, with the data plane being broken up into down-

stream and upstream, as visualized in Fig. 1. For the data

plane, core and extension components in Envoy can be ex-

posed to downstream and/or upstream traffic, and accord-

ingly, each component has its own security model. Core com-

ponents can be usedwith both untrusted and trusted services,

while extensions may be hardened against some combina-

tion of trusted or untrusted upstreams and downstreams.

For example, the Envoy OpenCensus Tracer extension is in-

tended to be hardened against untrusted downstreams, but it

assumes that the upstream OpenCensus Collector is trusted.

The main caveat here is that any libraries used in exten-

sions are assumed to be secure, but unfortunately, this is not

always the case. For instance, many Envoy extensions use

libcurl for performing HTTP requests, including in the AWS

extension common utils and the OpenCensus Zipkin Span

exporter implementation. libcurl has been responsible for

14 CVEs since 2018[19] (as of 2020) and there is an ongoing

effort to remove it as an Envoy dependency[23].

2.2 Distributed Tracing

Distributed tracing is the practice of bringing observability

to a microservice-oriented system. It relies on propagating

metadata between processes and network boundaries to con-

struct the complete journey of a request through a system,

even if that journey requires communication between multi-

ple services. A common approach to distributed tracing is to

represent a flow through the system as a trace consisting of

potentially nested spans, each representing some work being

done in a system (see Fig. 3).

Figure 3. For a distributed system consisting of microser-
vices, the work done on behalf of a single request can be
represented in terms of a trace consisting of temporally and
causally ordered spans, each representing the work being
done in a service. In the above diagram, for an example Car
Rental application, a request from the client to the Car Rental
Service spawns a child call to the User Service, which then
calls the Auth Service. Following the call to the User Ser-
vice, the Car Rental Service then contacts the Car Service
before returning the response to the client. The collection of
spans, representing the entire request, is grouped together
as a trace.

This approach to distributed tracing was introduced by

Google’s Dapper[21], which popularized the concepts of

traces and spans and their use for representing the work done

during a request. Following the publication of the Dapper

paper, multiple distributed tracing frameworks that follow

this model have been developed, including OpenTracing[17],

OpenCensus[15] (Google’s open-source tracing project that

was spawned by Dapper), and Zipkin[26], among many oth-

ers.

Distributed tracing gives visibility into the system, allow-

ing developers the ability to see the entire path of a request

through their system. It is used for debugging, system explo-

ration, performance analysis[22], and many other purposes

[25] [20].

2.2.1 OpenTelemetry. OpenTelemetry[16] is an open source

observability framework that aims to be robust, portable, and
5
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easy to instrument across many languages. It represents a

vendor-agnostic set of APIs, libraries, agents, and collector

service that can be used to capture distributed traces and

metrics from a microservice-oriented system. It was created

by the merging of OpenTracing and OpenCensus, and it is a

Cloud Native Computing Foundation[8] project.

Importantly, it represents the confluence of multiple ap-

proaches to the same philosophy of distributed tracing, and it

is an attempt to establish a single open source standard that is

defined, created, and led by the community. OpenTelemetry

has taken the approach of defining a language-agnostic spec-

ification that "describes the cross-language requirements and

expectations for all OpenTelemetry implementations"[16]. In

particular, for tracing, OpenTelemetry defines the behavior

for 1) the API, which is responsible for the definitions of the

interfaces for trace creation, management and exporting, and

2) the SDK, which implements the definitions and interfaces

in the API.

With the general specification and Protocol Buffer[24]

definitions defined, OpenTelemetry leaves it up to the com-

munity to develop the language-specific implementations.

The OpenTelemetry Spec reached its version 1.0 release in

early 2021, and with it, API and SDK release candidates were

ready for Java, Erlang, Python, Go, Node.js, and .Net[6]. The

OpenTelemetry C++ API and SDK implementations reached

version 1.0 later in 2021.

In addition to the specificifications above, OpenTelemetry

also defines the protocol for encoding, transporting, and de-

livering OpenTelemetry data, aptly named the OpenTeleme-

try Protocol (OTLP). This specification defines the imple-

mentation of OTLP over gRPC and HTTP 1.1, including

the Protocol Buffer schema for the request/response pay-

loads, by defining a single RPC for each type of data (e.g.

for the Request, it defines ExportTraceServiceRequest for

traces, ExportMetricsServiceRequest for metrics, and Export-

LogsServiceRequest for logs). It defines the specification for

communication between two nodes in tracing architecture,

though there may be more nodes (e.g. an application that

talks to an agent that talks to a collector).

2.3 Envoy’s Existing Tracing

Envoy allows for tracing all requests, and it also allows for

flexibility with respect to the type of tracing being used. It

uses a plugable tracing component, called a Tracer, that has

a general API that extensions can implement for various

tracing libraries. The HTTP Connection Manager uses the

Tracer on request start and end, and the Tracer implementa-

tions handle the definition of what a span is, span lifecycle

events (such as span creation, updating, and finishing), and

exporting spans (see Fig. 4).

Envoy provides a general API for a Driver class, which

defines how the tracer is instantiated, and a Span class, which

defines the Span interface. Tracing extensions can implement

these classes for the framework-specific requirements.

Envoy performs tracing at the application level. Once the

incoming byte stream has been decoded into HTTP via the

HTTP/2 Codec, the HTTP Connection Manager is responsi-

ble for the application-level lifecycle of the request. It calls

the Driver’s startSpan function to create a span when de-

coding the request’s headers, and it closes the span after

the response has been sent back to the client with a call to

the Span’s finishSpan function. This means that a Span ex-

ported by Envoy represents all of the work that Envoy does
6
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Figure 4. The structure of tracing in Envoy, with the HTTP
Connection Manager using a general Tracer API to commu-
nicate with framework-specific Tracer implementations.

for the span at the application level, including HTTP filter

processing, upstream connection handling, network delay

for connecting to the upstream service, any work being done

at or above the upstream service, and the upstream response

and response handling. Importantly, for an Envoy acting as

a load balancer, this means that Envoy’s Span is a snapshot

of how much time it took for the proxied request.

The Tracer interface also allows for Span modification. Im-

portantly, there’s a distinction between Envoy’s Span class,

which is a general interface that other Envoy code calls into,

and the framework specific Span; for example, the OpenCen-

sus Tracer implementation of the Envoy Span contains an

OpenCensus Span as a member variable.

This general API allows framework-specific extensions

to implement these interfaces, allowing for customizable

tracing via pluggable extensions. For example, if one starts

Envoy with the OpenCensus Tracer enabled, Envoy uses the

OpenCensus implementation of the Driver. When the HTTP

Connection Manager sees a new request, it calls the Open-

Census Driver’s startSpan implementation, which would

use the OpenCensus implementation of the Span definition.

When the request is finished, the HTTPConnectionManager

would finish the Span via the Span’s finishSpan call. The

OpenCensus implementation of the Span’s finishSpan would

then call an OpenCensus exporting library to export the

Span.

Envoy already has Tracer implementations for OpenCen-

sus, OpenTracing, LightStep, Zipkin, and Datadog. It also

allows for external tracers that come as a third party plugin

(such as Instana).

2.4 Challenges for Integrating OpenTelemetry

With Envoy

The OpenTelemetry C++ library has been developed as a

pluggable library to facilitate the process of adding Open-

Telemetry support to microservices. This section discusses

some of the challenges in creating the OpenTelemetry tracer

and using the general OpenTelemetry C++ library in Envoy.

2.4.1 Threading. There is amismatch between the thread-

ing expectations and requirements of Envoy and the Open-

Telemetry C++ SDK implementation, and directly using the

OpenTelemetry C++ SDK could potentially lead to perfor-

mance issues in Envoy due to this mismatch.

Because each Envoyworker thread acts as a single-threaded

event loop handling multiple connections, there must be as

little blocking as possible. Although trace exporting is done

at the end of the request’s lifecycle after the response has

been sent downstream and blocking won’t affect the latency

of the traced request, blocking could affect other requests in

progress on that worker thread (See Fig. 5 for an example

off-path blocking scenario). In particular, we must be careful

about blocking in multiple places in the execution path: if

there is a shared object that handles exporting spans, the

calling code should not block while waiting for it to be free,
7
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and that exporting object should also not have any block-

ing while the span exporting request is being made to the

collector.

By default, the OpenTelemetry C++ SDK’s OpenTeleme-

try gRPC exporter executes a synchronous call to the trace

exporting RPC. As this could potentially introduce some

blocking during the RPC call, even if it was provided with

a timeout, it could introduce blocking delays into Envoy’s

event loop, leading to increased latency for the other re-

quests being handled on that worker thread. To avoid this

latency, a common pattern is to run the synchronous call

in a background thread and use mutexes to keep a buffer of

spans to export; this is what the OpenTelemetry C++ SDK

does in its batch span processor[5].

The SDK implementations of the span processors also

introduce potentially blocking situations, even before the

exporter is called. The SDK’s simple span processor relies

on a custom spin lock mutex that uses lower level thread

handlers like std::this_thread::yield and

std::this_thread::sleep_for for gating access to the ex-

porter’s Export function. The SDK’s batch span processor

uses a background thread that relies on a mutex for control-

ling access to the exporter’s Export function. Because Envoy

is commonly carefully tuned to have the number of worker

threads exactly match the number of cores on the host ma-

chine [10], this additional thread and synchronization usage

may affect Envoy’s performance.

2.4.2 Dependencies and Security. The OpenTelemetry

tracer implementation will not be able to directly use the

OpenTelemetry C++ SDK due to its dependencies on libcurl.

Because of the security history of libcurl and the ongoing

efforts to remove it from Envoy[23], it will not be an option

Figure 5. Diagram of the worker thread’s event loop if we
block either waiting for the exporter or during the call to the
exporter. In the above example, the Envoy worker thread is
asynchronously handling events from two requests, A and
B. The sequence is as follows: 1) Envoy receives Request
A, 2) Envoy receives request B, 3) Envoy proxies request
A upstream, 4) Envoy receives the upstream response for
A, 5) Envoy proxies request B upstream, 6) Envoy returns
A’s response downstream, and 7) Envoy exports A’s trace.
At this point, if the request blocks, we will not be able to
handle any other events while the request is in flight, and
accordingly, Envoy can only handle 8) B’s upstream response
and 9) sending B’s response downstream after the exporting
call is done, even if they arrived during it. Since the worker
thread is a single thread, any blocking that request A does
during its life cycle has the potential to block other requests,
leading to off-path caused delays.

for exporting the OpenTelemetry spans from Envoy. More

restrictively, any dependencies for the OpenTelemetry tracer,

including the OpenTelemetry C++ SDK, must not use libcurl.

The main issue here is that many of the OpenTelemetry C++

SDK exporter implementations use libcurl for their HTTP

calls. For example, the OTLP http exporter relies on the

common http client, which uses libcurl for its HTTP requests.

Reusing it for the OpenTelemetry Tracer in Envoy would

further cement libcurl’s position as a dependency.

3 Design

I designed the OpenTelemetry Tracer extension with several

design axes in mind. Its threading model should mesh well

with that of Envoy’s; there should be no blocking and no

background threads. It should have few dependencies, which
8
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should not include libcurl. It may perform batching, but it

must do so without any blocking. For creating a connection

to the external trace collector, it should leverage Envoy’s

connection handling, rather than creating a separate RPC

connection. This section discusses those design choices, the

reasoning behind those choices, and alternative designs that

I considered. These design axes can be found in Table 1 along

with potential implementations and their tradeoffs.

3.1 Threading

I implemented the new OpenTelemetry Tracer extension us-

ing Envoy’s libevent-based asynchronous gRPC library. En-

voy uses this library for upstream gRPC connections, and it

is implemented using the asynchronous event-based events,

creating events and callbacks to be handled by the event

loop. This allows for no blocking when the Tracer is export-

ing a span, as the RPC events are handled asynchronously

like other connection events. While the export RPC is in

flight, the Tracer yields control back to the worker thread’s

event loop, allowing other connections to be processed in

the meantime.

The Tracer extension also performs no blocking when

accessing shared resources. Upon initialization by the Driver,

a Tracer object is instantiated in each worker thread’s thread

local storage, allowing access to it throughout the code run-

ning on that thread. A Tracer for each worker thread allows

the threads to remain independent; since each thread has

its own Tracer, there is no cross-thread bottlenecking. The

Tracer contains a shared exporter class that can be accessed

by each span. This exporter maintains the gRPC connection

to the OpenTelemetry collector and sends RPCs on behalf of

each exported span. As the OTLP allows for multiple concur-

rent calls, this allows for efficient sharing of the connection

and exporter without the need for blocking.

Another threading design choice was the question of what

to store in thread local storage to allow access across the

thread level. Storing just an Exporter in thread local storage

would allow for efficient RPC usage, as creating the RPC for

every connection would lead to scalability issues. Going one

level higher allows for shared use of system resources and

access to the Exporter while allowing for future flexibility

(see Section 3.5). The common Tracer can access common

Envoy resources from a single location, such as Envoy’s

thread safe RandomGenerator, used for generating Trace and

Span IDs, or Envoy’s TimeSource, used for marking Span

start and end times. This level of abstraction also allows for

cleaner refactoring in the future if the extension is updated

to use an OpenTelemetry C++ API Tracer, as it will also be

desirable to share it across calls in the same thread.

The Tracer extension uses no background threads for any

processing. Since the gRPC client performs the request asyn-

chronously, there is no need for a background thread that

waits for a synchronous call. Additionally, this also means

the batching capability in the tracer has been implemented

without the need for a background thread and locks; since

the worker thread is single-threaded and the gRPC call is

asynchronous, there is no need for two threads to share

access to the same buffer of threads.

These approaches contrast with some of the design choices

and implications in the OpenTelemetry C++ libraries. At the

time of writing, the OpenTelemetry C++ SDK’s gRPC export-

ing is synchronous by default[5]. Directly reusing it would
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Design Axes

Potential Solutions Threading Dependencies Batching Exporting

OTLP w/ Envoy’s
async gRPC

Nonblocking, meshed
with Envoy’s worker
thread libevent event
loop

OTel protos May allow batching,
but without locks

Envoy’s async gRPC
library, leveraging
Cluster Manager

OTLP w/ OTel C++
API and Envoy’s
async gRPC

Some blocking and
assumptions about
accessing global
objects in the OTel
API

Dependency on OTel
protos and OTel C++
API

" "

OTLP w/ OTel C++
API & SDK

Some blocking for
access to global
objects in the OTel
API and SDK; use of
background thread

Dependency on OTel
protos, OTel C++ API
& SDK, and third
party libraries (gRPC)

May allow batching,
but relies on locks

Independent RPC
connection in exporter
in background thread

Various output spans
w/ OTel C++ API and
SDK

" Dependency on OTel
protos, OTel C++ API
& SDK, and third
party libraries (gRPC,
libcurl)

" Various independent
connection in exporter
(HTTP or gRPC)

Table 1. Some of the design axes for adding the new OpenTelemetry Tracer extension to Envoy.

lead to delays in the worker thread, which is problematic. Be-

cause this call is synchronous, one approach is to use a batch

exporting approach, where a background thread is created

that handles the synchronous call. This is the approach taken

in the OpenTelemetry C++ SDK’s batch processor. While

this removes the issue of explicit waiting during the RPC, it

does introduce additional considerations for the cross-thread

communication. The background thread reads from a buffer

of spans that the main thread writes to, and this access must

be coordinated with locks to prevent race conditions from

occurring. If these solutions were used in the OpenTelemetry

Tracer, these locks, much like the synchronous RPCs, would

block the Envoy worker thread’s event loop, introducing

delay and latency issues.

3.2 Security and Dependencies

The only non-Envoy dependency in the new OpenTelemetry

Tracer extension is the OpenTelemetry Trace Protocol Buffer

definitions. Envoy already depends on the OpenTelemetry

Protocol Buffers for using OpenTelemetry Logs in the Open-

Telemetry logging extension, so the additional use does not

add an entirely new dependency. It leverages Envoy’s exist-

ing libraries such as the async gRPC client to perform the

RPC connection. Envoy’s job is to make requests to external

backends, and it is very good at it; this new Tracer leverages

that prowess.

Due to libcurl’s security track record and the ongoing

effort to excise it from the code base, it was not a viable de-

pendency for the new Tracer. Additionally, since the Open-

Telemetry C++ SDK relies on libcurl for parts of its span

10
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exporting, this meant that the SDK could not be directly

plugged in and used, as doing so would add libcurl as a

downstream dependency. While this means the exporter

does not have the built in functionality of supporting mul-

tiple exported trace types that the SDK has, Envoy already

has tracer extensions for some of these types. In the future,

if the SDK’s dependencies change, that flexibility and direct

use may be possible, but as of the time of this writing, it is

not.

3.3 Batching

The OpenTelemetry Tracer allows for flexible batching after

a given batching threshold. The exporter keeps a buffer of

pending spans to export and checks its size against that

threshold before exporting. For a batching threshold of 1,

this means that Envoy would export every span immediately

after the response has been returned to the client. This is the

pattern followed by some other Envoy tracers as well, and

for lower traffic deployments, this 1:1 pairing would allow

for a more consistent cost.

For a higher batching threshold, the Tracer will wait until

its pending span buffer has reached that given threshold or

a given time interval has passed. It then groups the spans

together and sends them as a batch to the collector. Because

theworker thread executes as a single thread and the RPC call

is asynchronous, this batching can be implemented without

a background thread or cross-thread synchronization. The

buffer will only be accessed by a single thread at a time and

does not require guarding by mutex.

The tradeoff for batching extends beyond just Envoy’s per-

formance. Although Envoy may have no trouble executing

an additional RPC message for each request, the upstream

trace collector and the broader network may need more flex-

ibility with regards to the volume of messages being sent. As

the 1:1 span to export ratio doubles the number of requests

on the network by adding an export call for every request,

this batching allows for a gentler firehose of span exporting.

Additionally, the OpenTelemetry may also benefit from the

batching, as it is directly in the path of that firehose as well.

While the OpenTelemetry C++ SDK also allows for the

flexibility of batching, it does so in a way that contrasts with

Envoy’s threading model (see above). In particular, it runs a

background thread that is responsible for the synchronous

call, then coordinates a shared buffer via mutexes. While

this removes the burden of the synchronous call from the

main thread, it still requires the synchronization between

threads, which is potentially problematic for Envoy. While

the broader system may benefit from this batching, Envoy’s

strict needs require the implementation to be better suited

for Envoy’s non-blocking needs.

3.4 Connecting to the collector

To send OTLP messages to the OpenTelemetry collector, the

exporting call in the OpenTelemetry Tracer uses Envoy’s

asynchronous gRPC client, which is accessed by an exporter

class that lives in the Tracer. This client allows the Tracer

to use an asynchronous event-based call that meshes well

with the worker thread’s event loop. Additionally, the client

ties in with Envoy’s handling of other upstream requests, as

it handles the connection to the OpenTelemetry Collector

through Envoy’s cluster management and router, similar to

the way it would handle a connection to an upstream ser-

vice. This allows simple configuration of the OpenTelemetry

Collector as a cluster in Envoy’s configuration, much like
11
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one would configure a backend service. The connection is

handled efficiently in Envoy’s cluster manager system, and

all parts of the connection are handled asynchronously in

harmony with Envoy’s event loop. This is something Envoy

already does well, and the Tracer can take advantage of it

for its connection needs.

One other option for the exporting would be sending the

OTLPmessages over HTTP. Envoy also has an asynchronous

HTTP library, and one future development could be to add

support for this as well. Because the Tracer accesses the gRPC

client through its exporter class, it would be straightforward

to add a configuration option that initializes the Tracer with

an HTTP exporter or a gRPC exporter accordingly. To create

that HTTP connection, it would be key for the exporter

to reuse Envoy’s HTTP client; as mentioned above, using

libcurl would not be a viable option for it.

This approach allows the RPC connection to the collector

to mesh well with Envoy’s event loop. The OpenTeleme-

try C++ SDK and other Tracer extensions in Envoy use an

independent RPC client for the connection, creating it di-

rectly from the Tracer to the collector.While this functionally

works, adding the exporter as an integrated part of Envoy’s

upstream connection handling allows for simpler configura-

tion and better performance.

3.5 Future extensibility and the OpenTelemetry C++

API & SDK

This implementation represents an initial effort to get OTLP

support in Envoy without the overhead of adding the exter-

nal OpenTelemetry C++ API and SDK dependencies.

One design decisionwas the balance between howmuch of

the implementation would be custom written code and how

much would be reused from the OpenTelemetry C++ API

and SDK. Because of the mismatch of expectations around

threading, blocking, and global variables, the initial imple-

mentation of the OTLP trace exporting does not rely on the

API or the SDK. In this way, this implementation defers to

the requirements of Envoy over the benefit of the shared

OpenTelemetry library code.

In a way, this brings up the larger question of applying gen-

eral purpose framework code to very specialized codebases.

In the case of Envoy, it has a number of unique requirements,

such as its threading model and its strict dependency re-

quirements, while also containing functionality that already

solves some of the general problem, like its asynchronous

connection handling. Envoy is good at its job of handling

connections, and leveraging that allows us to build on En-

voy’s strength. The OpenTelemetry C++ API and SDK are

designed to be used in a wide variety of services to easily in-

strument them with OpenTelemetry tracing; while they are

usable and applicable to many types of programs, Envoy’s

requirements necessitate a more specialized approach.

That being said, there is room to extend this solution in

the future to use the OpenTelemetry C++ library concepts.

The added Tracer class could be refactored in the future

to use the OpenTelemetry C++ Tracer and TracerProvider

classes. A custom implementation of the SDK could be added

that implements the same behavior without locks, and it

could use a custom Exporter that ties in to Envoy’s async

gRPC client. By keeping the Tracer abstraction between the

Driver’s startSpan call and the Span’s export function, the

implementation allows for future refactoring without major

API changes.

12



Emplacing New Tracing

4 Implementation

I implemented the new OpenTelemetry Tracer extension in

around 1,500 lines of code. The implementation will soon

be available on GitHub. To test the implementation, I wrote

unit tests in C++ and confirmed the correct tracing behavior

with a simple system consisting of two simple backends and

the OpenTelemetry Collector (see Section 5).

4.1 Implementation details

To add the new OpenTelemetry capability, I added a Tracer

extension for OpenTelemetry. It consists of a factory class

for instantiating the tracer (OpenTelemetryTracerFactory),

a Driver class implementation, a Tracer class that contains

an OpenTelemetryGrpcTraceExporter class, and an Envoy

Span class implementation that contains an OpenTelemetry

Span as a member variable. These were all added in a new

Envoy::Extensions::Tracers::OpenTelemetry

namespace.

The Tracer class is an intermediary parent class that con-

tains both the exporter (the OpenTelemetryGrpcTraceEx-

porter) used for sending the spans to the collector and meth-

ods for creating new Spans. When the Tracer creates a new

Span, it passes a reference to itself to the Span constructor,

which then stores it as a member variable. This reference to

the parent Tracer allows the Span’s finishSpan method to

access the shared Exporter through the parent Tracer; since

the Span finalizing call lives as a method on the Envoy Span

class, this reference allows it to refer back up through the

class hierarchy to access the shared Exporter. See Figure 6

for a depiction of this architecture.

Figure 6. Diagram of the architecture of the new Open-
Telemetry Tracer. The Tracer is stored in Thread Local Stor-
age, accessible through the Tracer API from HTTP Connec-
tion Manager instances on the worker thread. Using Envoy’s
async gRPC client, the Exporter sends Spans to the Collector
through the Cluster Manager’s external connection function-
ality.

Other tracers, such as the OpenCensus tracer, rely on the

internal span representation referencing a static global ex-

porter that was created in a general Get function. In the case

of the OpenCensus Span, this behavior lives in framework-

specific code that is used in Envoy. Since the OpenTelemetry

implementation does not rely on the OpenTelemetry frame-

work specific code, this pattern can be avoided, and the

common exporter can be used without the global object.

I implemented the batching without the need for mutexes

or other synchronization, as mentioned above. To allow for

full flexibility, I set the batching threshold (how many spans

to wait for before exporting) and batching timeout (how of-

ten to flush the spans in the buffer if the threshold is not met)

to user configurable runtime configuration variables[9]. This

allows Envoy users to set their own values and to modify the

values without restarting Envoy. For example, if the Collec-

tor becomes overwhelmed due to the frequency of messages,

the batching threshold could be dynamically set to a higher
13
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number to relieve some of the pressure from the collector.

Additionally, this lets the user define the values that are best

for their deployment and gives them an additional knob to

turn when tweaking the performance of their Envoys.

Additionally, since the gRPC Exporter uses Envoy’s async

gRPC client, it handles the connection to the OpenTelemetry

Collector through Envoy’s cluster management and router,

similar to the way it would handle an upstream connection.

This allows simple configuration of the OpenTelemetry Col-

lector as a cluster in Envoy’s configuration, much like one

would configure a backend service. The connection is han-

dled efficiently in Envoy’s cluster manager system, and all

parts of the connection are handled asynchronously in har-

mony with Envoy’s event loop. For example, the following is

a snippet from the Envoy configuration required to use the

new Tracer, with the OpenTelemetry tracer’s configuration

using an upstream cluster for its RPC:

...

tracing:

provider:

name: envoy.tracers.opentelemetry

typed_config:

"@type": ...OpenTelemetryConfig

grpc_service:

envoy_grpc:

cluster_name: opentelemetry-collector

timeout: 0.250s

...

clusters:

- name: opentelemetry-collector

type: STRICT_DNS

lb_policy: ROUND_ROBIN

http2_protocol_options: {}

load_assignment:

cluster_name: opentelemetry-collector

endpoint:

- lb_endpoints:

- endpoint:

address:

socket_address:

address: open-telemetry

# Default Collector OTLP gRPC port

port_value: 4317

The common pattern in the OpenTelemetry C++ library

is to have global objects, such as a TraceProvider that uses a

global TextMapPropagator for propagating trace context and

a shared SpanExporter. While this would work for most mul-

tithreaded applications, the siloed model of Envoy’s worker

threads requires stricter separation. The new implementa-

tion is one level lower; instead of a single shared singleton

across all threads, the new Tracer is a per-thread singleton.

But, even bringing the global object pattern to the thread

level would clash with Envoy’s thread model, as waiting for

a mutex could be problematic for the single worker thread’s

event loop (see Section 3.1). Additionally, since this new

OpenTelemetry does not use the OpenTelemetry C++ SDK

(see Sections 3.1 and 3.2), the Tracer and Exporter could not

just use the SDK implementation for exporting; this required

writing the exporter from scratch.

4.2 Open Source process

No project exists in isolation, and this work was no exception.

Working at the interface between two open source projects
14
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offered a unique opportunity to directly engage with main-

tainers and experts in each project, and I am deeply indebted

to the community for their help, insight, and guidance.

I initially found the project by reaching out to Harvey

Tuch, one of the Envoy maintainers at Google. I began the

process with an initial design proposal that I had reviewed by

Envoy maintainers, OpenTelemetry contributors, engineers

who had done previous work on adding tracers to Envoy,

and engineers who had worked on adding OpenTelemetry

logging support to Envoy. Following the initial proposal, I

took on the feature request bug[1] in the Envoy GitHub issue

tracker before starting development. During the process, I

continued to have discussions with Envoy and OpenTeleme-

try maintainers; these conversations helped ensure that the

direction of the project was aligned with Envoy’s expecta-

tions and common OpenTelemetry practices. In particular,

it was very helpful to understand the current state of the

OpenTelemetry C++ libraries and confirm that the approach

above was appropriate.

At the time of writing, I’m planning to open a pull request

in upstream Envoy with this completed work and evalua-

tion. This will involve some additional productionizing, code

review, and shepherding through the pull request process,

as well as any additional follow-up work to land this work

upstream.

5 Evaluation

This section covers evaluating the new Tracer and the afore-

mentioned design decisions.

To evaluate the design choices for this implementation, I

performed benchmarking via Nighthawk, Envoy’s L7 per-

formance characterization tool[4]. Nighthawk sends a large

Figure 7. Diagram of the simple test system for evaluation
consisting of the Nighthawk Client, Envoy, the Nighthawk
Test Server as the single backend, and the OpenTelemetry
Collector.

volume of traffic to a given endpoint (in this case, pointed at

an Envoy), and it has many configuration options, including

the number of connections, the concurrency of the requests,

and request characteristics such as request method, response

body size, and desired number of requests per second (RPS).

Nighthawk records latency information connection setup, re-

quest to response time, and overall total latency. Nighthawk

also provides simple test server that generates predetermined

responses at a configurable delay.

Given a duration, Nighthawk will perform as many re-

quests as it can up to the given RPS limit for that duration. It

can be run in either closed-loop mode, where it will limit its

rate depending on responses from the system, or open-loop

mode, where it will perform no rate limiting. To explore

the effect on request latency and overall throughput, these

evaluations were mostly performed in closed-loop mode.

5.0.1 Methodology. I performed these evaluations on a

simple system consisting of the Nighthawk Client, an Envoy

proxy, the OpenTelemetry Collector, and the Nighthawk Test

Server (see Fig. 7). The Envoy running the OpenTelemetry

Tracing extension used a single worker thread (with the con-

currency flag set to 1) to improve comparability across runs.

Sampling was manually set to always be on to ensure that

every request would generate a span. The Envoy had a single

backend destination service, the Nighthawk Server, which
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responded with 10 bytes of the letter "a" after a static de-

lay of 10ms (i.e. every request to the Nighthawk test server

takes 10ms and returns "aaaaaaaaaa"). The OpenTeleme-

try Collector was added to Envoy as a static cluster. I was

able to record overall latency statistics from the Nighthawk

client, detailed request information from Envoy, and trace

and span statistics from the OpenTelemetry collector. These

evaluations were performed on a gLinux machine with 6

cores and 128 GB of RAM. Note that these evaluations are

not direct measures of Envoy’s capabilities as a high per-

formance proxy; additional evaluations in a production-like

environment with additional configurations would allow the

best comparison (e.g. comparing Envoy to another proxy).

5.1 Comparison with Envoy without Tracing

For a confidence check for the efficiency of the new tracer, I

performed benchmarking using the same Envoy binary in

two different configurations, first without tracing and then

with the new OpenTelemetry Tracer enabled. The Open-

Telemetry Tracer used a default batching threshold of 125.

For these two runs, I performed the benchmarking with

Nighthawk in the open-loop mode, where it does not wait

for a request to finish before sending additional requests.

This allowed me to saturate Envoy and show that a similar

throughput level with tracing does not lead to additional

latency. In order to isolate any additional latencies, I ran the

Nighthawk test server without the artificial delay, leading to

the overall latencies being reflective of the time spent in the

Envoys.

Each test run consisted of 60 seconds of 12 worker threads

each sending a maximum of 100 calls per second with 4

connections. This resulted in 72000 total requests at 1200

requests per second being sent to the Envoy. Additionally, I

was able to verify from Envoy and Collector statistics that all

spans were successfully transmitted to the Collector for the

run with tracing enabled. The latency results from this test

can be seen in Figure 2. Note that both configurations exhibit

some variation in the later latency percentiles; one could

imagine that with high amounts of traffic, there would be

many competing events to be handled by the event loop, and

much like a random walk, some of these unlucky requests

may be destined for slightly longer delays at the tail end.

This comparison does confirm that this approach is in the

same ballpark latency-wise without any surprising latency

increases due to the new Tracer, as the latency percentiles are

similar across the board and only a small difference beyond

the standard deviation at the 99.9th percentile.

5.2 Batching

The next question for evaluation is as follows: how does the

choice of the OpenTelemetry Tracer’s batching threshold

affect Envoy’s performance? To evaluate this impact, I per-

formed benchmark testing with the batching threshold set

to various values ranging from 1 (i.e. no batching) to 125 (i.e.

spans would be exported every 125 requests).

Because the benefit from batching would be most apparent

at higher request volumes, I performed this benchmarking

with a 100x limit on total traffic as the previous test, with

each test run consisting of 60 seconds of 12 worker threads

each sending a maximum of 1,000 calls per second with 4

connections, leading to a maximum of 12,000 RPS. Due to

the saturation of the system and the closed-loop mode, the

Nighthawk workers reached a lower limit of RPS; this varied

across the runs as Envoy’s performance changed, leading
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Configuration Mean Std dev
Latency Percentile

0.5 0.75 0.8 0.9 0.95 0.99 0.999

Envoy without trac-
ing

0.45ms 0.44ms 0.40ms 0.43ms 0.44ms 0.47ms 0.53ms 1.38ms 6.15ms

Envoy with Open-
Telemetry tracing

0.48ms 0.53ms 0.42ms 0.44ms 0.44ms 0.48ms 0.59ms 1.63ms 7.39ms

Table 2. Comparing 60 seconds of 1200 RPS being sent to Envoy with and without the new OpenTelemetry Tracer.

Figure 8. For a high volume evaluation, changing the batch-
ing threshold allowed the OpenTelemetry Collector to "catch
up" to the spans coming from the Envoy.

to the differences in total proxied requests. This resulted in

around 3,000 RPS being sent to the Envoy. The results of this

evaluation can be seen in Table 3, and a visualization of the

change in span acceptance can be seen in Figure 8.

The main result here is that the full collection of spans was

not being received by the OpenTelemetry Collector at lower

batching thresholds, although Envoy was sending a message

for each exported span (as verified by the Envoy logs). This

indicates that the volume of messages was too high for the

Collector and that it dropped incoming spans. Additionally,

the effect of the additional exporting calls can be seen in En-

voy’s increase in throughput (seen in the increase in number

of requests Envoy was able to handle from Nighthawk) and

the decrease in the 99th latency percentile as the batching

threshold increased. While the exact batching values may

not translate across network and system configurations (i.e.

125 is not a silver bullet batching threshold), this shows the

ability of batching to help mitigate network saturation, and

the dynamic configuration allows for flexible use to suit the

deployment’s needs. In combination with a dynamic sam-

pling rate, this threshold will allow developers to further

tune their systems.

5.3 Connecting to the collector

One of the design decisions mentioned above was the choice

of using Envoy’s async gRPC client instead of a separate

RPC client, either in a synchronous mode (similar to the

OpenTelemetry C++ SDK’s simple span processor) or in

a background thread (similar to the OpenTelemetry C++

SDK’s batch span processor). To evaluate this design deci-

sion, I performed benchmarking with the OpenTelemetry

Tracer implemented in those three ways: 1) with Envoy’s

async gRPC client as described above, 2) using a separate

synchronous vanilla gRPC connection, and 3) using a sepa-

rate synchronous vanilla gRPC connection in a background

thread with batching, with the latter two not leveraging

Envoy’s upstream connection handling.

I implemented both additional versions with batching as

well. For the synchronous gRPC in the main thread, the
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Configuration Total proxied
requests

99th latency
percentile

Spans received
by collector

Successful
requests to
Collector

Percentage of
total spans
accepted by
Collector

Envoy with
OTLP tracing
and no batching

172133 23.8ms 16361 16361 9.6%

Envoy with
OTLP tracing
and batching
every 5 spans

187850 22.1ms 74630 14926 39.7%

Envoy with
OTLP tracing
and batching
every 25 spans

191943 21.7ms 177575 7103 82.5%

Envoy with
OTLP tracing
and batching
every 125 spans

195061 21ms 195061 1561 100%

Table 3. The performance of various batching thresholds and the downstream effect at the Collector..

Tracer keeps pending spans in a buffer calls a synchronous ex-

porting RPC when the number of pending spans has reached

the batching threshold. For the synchronous gRPC in the

background thread, the worker thread appends each span

to a buffer. The background thread loops continuously, and

when it sees that the buffer has met the batching threshold, it

exports all spans in the buffer. This solution uses mutexes to

guard shared access to the span buffer to prevent race condi-

tions. These are the approaches taken in the OpenTelemetry

C++ SDK for the simple span processor, which uses a syn-

chronous call, and the batch span processor, which executes

the synchronous RPC in a background thread from a shared

and guarded mutex.

Using the same system configuration as above, I evaluated

the three versions with a maximum of 100 RPS from each

Nighthawk worker thread for a total of 1,200 RPS to Envoy

for 60 seconds. Each version used a batching threshold of 125

spans. After each run, I was able to verify from the Collector

logs that no spans were dropped. The results are in Table 4.

As expected, the synchronous gRPC performance was

much worse, resulting in a 26ms increase in the mean la-

tency and an increase of nearly 55ms in the 99th percentile

latency. Since the Nighthawk Test Server introduces an artifi-

cial delay of 10ms, meaning that the Envoy-specific delay in

the mean time increased from 1.6ms to 26ms. This is further

evidence that we do not want to block the event loop. While

the use of the background thread allowed the third version

to have better performance with the synchronous RPC run-

ning in the background, it still showed signs of worsened

performance at the higher percentiles. While the majority of

the requests had similar performance to the use of Envoy’s

asynchronous client, these results suggest that there is a tail

segment of requests that do get blocked while waiting on the
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shared mutex that coordinates between the worker thread

and the background thread.

I next performed an evaluation with an increase in vol-

ume of requests to the Envoy. Much like the firehose test

from before, each worker thread was allowed a maximum

of 1000RPS, resulting in a maximum of 12,000 RPS to Envoy,

though like the earlier evaluation, resource contention re-

sulted in fewer RPS than the maximum (around 3,200). The

results are shown in Table 5. While the mean and median

latencies are similar, the implementations diverge after the

90th percentile, with the tail latencies in the background

thread implementation nearly 14ms longer than those of the

async implementation. This corresponds to more delays due

to blocking and synchronous requests; as the background

thread accesses the shared buffer, the worker thread must

wait before appending spans to the buffer and the RPC call is

limited to sequential calls. This may be improved by increas-

ing the batching threshold further, but there is an additional

tradeoff between a larger RPC message size and the duration

of the RPC, as well as the volume of incoming spans that the

Collector can handle. This could also be improved through

more advanced lockless programming techniques, though

the tested design is that of the C++ SDK and allows us to

directly compare the async gRPC with it.

5.4 Comparison with an existing Tracer extension

As an additional confidence test, I performed an evaluation

comparing the new OpenTelemetry Tracer with the behavior

of the Zipkin Tracer. The Zipkin tracer has a similar design,

where it maintains a buffer of spans and exports them at a

given batching threshold. The Zipkin performs its exporting

via Envoy’s async HTTP client; much like the async gRPC

client, it performs its exporting via Envoy’s built-in connec-

tion handling. I performed 60 seconds of 100 RPS from each

Nighthawk thread, leading to 1,200 RPS to Envoy, and I was

able to verify via logs that all 7200 spans were accepted by

the OpenTelemetry Collector. Note that because the Open-

Telemetry Collector also accepts Zipkin traces, I was able to

reuse it and verify the span receipt in a similar way to the

OpenTelemetry spans. The results from this evaluation are

in Table 6.

While not a perfect comparison between these configura-

tions, this does confirm that this approach is in the same ball-

park latency-wise without any surprising latency increases

due to the new Tracer.

6 Future Work

This is the first step at adding OpenTelemetry tracing sup-

port to Envoy. Although it represents a subset of the possible

features of the OpenTelemetry C++ SDK, it does represent

the meshing of OpenTelemetry tracing and Envoy’s strict

requirements. Future work could include the refactoring of

this solution to include the headers and structure of the

OpenTelemetry C++ API and SDK, though the implementa-

tions would need to align with Envoy’s requirements and

goals. This could be done in parallel with hardening and

improvements to the OpenTelemetry C++ client code; for

instance, the gRPC exporter could take an existing stream

or client instead of creating its own. That being said, this

still arrives at the same question as earlier: how specialized

should general-use framework code be made in order to fit a

very specialized application?

Additionally, as the OpenTelemetry C++ library continues

to develop and harden, an interesting future workstream
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Configuration Mean Std dev
Latency Percentile

0.5 0.75 0.8 0.9 0.95 0.99 0.999

Envoy’s asynchro-
nous gRPC client

11.6ms 1.2ms 11.0ms 12.6ms 12.7ms 12.7ms 12.8ms 13.8ms 19.2ms

Synchronous gRPC 36.0ms 8.1ms 36.0ms 40.2ms 41.2ms 45.5ms 51.6ms 58.7ms 63.9ms

Synchronous gRPC
in background
thread

11.6ms 1.5ms 11.5ms 12.6ms 12.7ms 13.2ms 13.7ms 16.2ms 22.9ms

Table 4. Latencies when comparing 60 seconds of 120 RPS being sent to Envoy with the OpenTelemetry Tracer implemented
in three separate ways: with Envoy’s asynchronous gRPC client, with a synchronous gRPC client, and with a synchronous
gRPC client running in a background thread.

Configuration Mean Std dev
Latency Percentile

0.5 0.75 0.8 0.9 0.95 0.99 0.999

Envoy’s async gRPC
w/ batching=125

14.8ms 2.3ms 14.7ms 16.3ms 16.6ms 17.8ms 18.9ms 21.0ms 23.2ms

Synchronous gRPC
in background
thread w/ batch-
ing=125

14.7ms 3.0ms 14.3ms 16.3ms 16.7ms 18.2ms 19.4ms 24.7ms 37.4ms

Table 5. Latencies from the comparison of batching with Envoy’s async gRPC client and batching with the synchronous call
in a background thread.

Configuration Mean Std dev
Latency Percentile

0.5 0.75 0.8 0.9 0.95 0.99 0.999

Envoy with Zipkin
tracing

11.5ms 1.4ms 11.0ms 12.6ms 12.9ms 13.0ms 13.4ms 14.8ms 19.7ms

Envoy with Open-
Telemetry tracing

11.6ms 1.2ms 11.0ms 12.6ms 12.7ms 12.7ms 12.8ms 13.8ms 19.2ms

Table 6. Latencies from comparing the new Envoy OpenTelemetry Tracer with the Zipkin tracer, which shares some of the
design choices.

may be allowing for multiple different types of traces. While

Envoy currently has a separate tracer for each framework,

Envoy itself could represent the bridge between Envoy’s

spans and the external frameworks. The OpenTelemetry C++

allows for the use of plugable exporters to export framework-

specific spans, and the OpenTelemetry Tracer extension

could leverage that ability and be the single point of tracing

for Envoy.

The intersection of Envoy and distributed tracing is still

very open for future work, including tracing at just the proxy

level (what would a system’s trace’s look like when only the
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proxies are instrumented), control plane work (how could En-

voy’s dynamic configuration be augmented with tracing in-

formation like Jaeger’s dynamic sampling configuration [3]),

more dynamic asynchronous control over tracing via multi-

ple queues of varying levels of priority[7], and distributed-

tracing based performance analysis[22] of microservice ar-

chitectures via proxy-level tracing.

7 Conclusion

Distributed tracing is the practice of bringing observability

to a microservice-oriented system. It relies on propagating

metadata between processes and network boundaries to con-

struct the complete journey of a request through a system,

even if that journey requires communication between multi-

ple services. OpenTelemetry, an open-source standard and

framework for distributed tracing, has emerged as the front

runner standard in distributed tracing in industry. Envoy is

a high performance C++ distributed proxy that is commonly

used in modern service-mesh architectures. This new Open-

Telemetry tracing support to Envoys allows for the efficient

exporting of OTLP traces from Envoy, and it sets the stage

for future development with the OpenTelemetry framework.
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